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ABSTRACT

Motivation: Regulatory, non-coding RNAs often function by forming a

duplex with other RNAs. It is therefore of interest to predict putative

RNA–RNA duplexes in silico on a genome-wide scale. Current com-

putational methods for predicting these interactions range from fast

complementary-based searches to those that take intramolecular

binding into account. Together these methods constitute a trade-off

between speed and accuracy, while leaving room for improvement

within the context of genome-wide screens. A fast pre-filtering of pu-

tative duplexes would therefore be desirable.

Results: We present RIsearch, an implementation of a simplified

Turner energy model for fast computation of hybridization, which

significantly reduces runtime while maintaining accuracy. Its time

complexity for sequences of lengths m and n is Oðm � nÞ with a

much smaller pre-factor than other tools. We show that this energy

model is an accurate approximation of the full energy model for

near-complementary RNA–RNA duplexes. RIsearch uses a Smith–

Waterman-like algorithm using a dinucleotide scoring matrix which

approximates the Turner nearest-neighbor energies. We show in

benchmarks that we achieve a speed improvement of at least 2.4�

compared with RNAplex, the currently fastest method for searching

near-complementary regions. RIsearch shows a prediction accuracy

similar to RNAplex on two datasets of known bacterial short RNA

(sRNA)–messenger RNA (mRNA) and eukaryotic microRNA (miRNA)–

mRNA interactions. Using RIsearch as a pre-filter in genome-wide

screens reduces the number of binding site candidates reported by

miRNA target prediction programs, such as TargetScanS and

miRanda, by up to 70%. Likewise, substantial filtering was performed

on bacterial RNA–RNA interaction data.

Availability: The source code for RIsearch is available at: http://rth.dk/

resources/risearch.
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1 INTRODUCTION

Non-coding RNA (ncRNA) form an abundant class of genes

involved in both regulation and housekeeping functions, often

in complexes with proteins and/or through interactions with

other RNAs (Amaral et al., 2008). The potential for ncRNAs

is becoming apparent, e.g. in the mammalian genome where the

protein coding regions account for�1.2% (International Human

Genome Sequencing Consortium, 2004) while the majority of the

genome is transcribed (The ENCODE Project Consortium,

2007). Even in smaller genomes, such as fungi strains of

Aspergillus, ‘only’ 45–50% of the genome encodes proteins

(Galagan et al., 2005), leaving plenty of room for ncRNAs

which could hold the potential for improvements to microbial

industrial production, such as has already been investigated in

Streptomyces (D’Alia et al., 2010). Also in mammalian produc-

tion systems such as Chinese hamster ovary cell lines, ncRNAs

receive increasing attention (Barron et al., 2011).
Computational screens for structured RNAs result in thou-

sands of candidates on a genome-wide scale and it is of interest

to predict possible RNA interaction partners of these sequences

(Gorodkin et al., 2010; Gorodkin and Hofacker, 2011). These

candidates are predicted from sequence and structure-based

alignments, by using a combination of thermodynamic and evo-

lutionary constraints (such as compensating base pair changes)

(Pedersen et al., 2006; Torarinsson et al., 2006, 2008; Washietl

et al., 2005; Weinberg et al., 2007). A principal problem, how-

ever, is to obtain experimental data for each of these candidates,

such as the full-length RNA sequence and its function. Another

factor is that many ncRNAs are expressed at extremely low

levels. For example, the regulatory antisense RNA of the

GAL10 operon in yeast is functional and expressed as one

copy per 14 cells (Houseley et al., 2008). Coping with such low

expressed ncRNAs on a high-throughput experimental scale is

still an intractable task.
One approach toward functional analysis of ncRNA candi-

dates is to search for possible interactions with other RNAs, as

a substantial class of ncRNAs function by duplex formation with

other RNAs, of which microRNAs (miRNAs) are a popular

example. However, not only small ncRNAs interact by base pair-

ing, but also long ncRNAs. For example, Staufen 1-mediated

messenger RNA decay (SMD) can be initiated by imperfect

base pairing between Alu elements in a lncRNA and in the

30-UTR of an SMD target (Gong and Maquat, 2011).

Translational regulation by short RNAs (sRNAs) is also a

common mechanism existing in bacteria (Waters and Storz,

2009). A well-known example is the MicC-ompC messenger

RNA (mRNA) interaction causing translational repression

(Chen et al., 2004; Vogel and Papenfort, 2006).*To whom correspondence should be addressed.
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It is furthermore of interest to use the homology information
from multiple structural alignments of ncRNA candidates for
interaction prediction. Recent computational approaches that

address this are PETcofold (Seemann et al., 2011) and ripalign
(Li et al., 2011). Other methods that work on pairs of single
sequences include PairFold (Andronescu et al., 2005), RNAup

(Mückstein et al., 2006) and inteRNA (Alkan et al., 2006).
However, such approaches which take both intra- and intermo-
lecular base pairings into account seem in general to be less suit-

able for genome-wide interaction screens.
It is therefore relevant to develop fast methods to search for

putative RNA–RNA interactions not only for existing ncRNA
candidates, but also to find novel RNAs which, for example,

hold the potential to be lineage specific or perform lineage-
specific functions (Bentwich et al., 2005; Ohhata et al., 2011).
The computational prediction of RNA–RNA interactions is a

rapidly growing research area. As discussed in Seemann et al.
(2011), several classes of algorithms with increasing complexity in
time and memory were developed. Here, we consider algorithms

that use a thermodynamic energy model for predicting intermo-
lecular interactions, while ignoring intramolecular structures. An
early method was RNAhybrid (Rehmsmeier et al., 2004) which

makes use of the full energy model, only excluding intramolecu-
lar base pairings and multiloops. This yields a complexity of
Oðm � nÞ in memory and Oðl2 �m � nÞ in time, with m and n

being the lengths of query and target, respectively, and l the
maximum loop length. Hodas and Aalberts (2004) explicitly
noted the analogy between Smith–Waterman sequence alignment

(Smith and Waterman, 1981) and intermolecular RNA pairing.
Their implementation in BINDIGO handles different loop types
with different states and dynamic programming (DP) matrices. A

recent and faster method is RNAplex (Tafer and Hofacker, 2008;
Tafer et al., 2011), which uses a simpler energy model in the first
‘scanning phase’. It approximates larger loops with a linear

model, thereby discarding the length-dependent term and thus
the factor l2 in time complexity. It also reduces memory con-
sumption to a linear scaling. In a second step, the full energy

model can be used on sub-sequences to refine potential binding
sites. Even though RNAplex decreases time complexity while
maintaining a thermodynamic model, applying it to

genome-wide screens is still a computationally demanding task.
Here, we simplify the energy model even further, with the goal

of designing a screening method for RNA–RNA interactions

that can be used as a pre-filter for computationally complex
methods in genome-wide screens. Consequently, our goal here
is to search for near-complementary regions. To our knowledge,

the fastest tool for such a task is RNAplex which recently was
extended to use the information from multiple sequence align-
ments as well as pre-computed accessibility profiles. However,

when searching for near-complementary regions, the energy
model of RNAplex can be simplified further. Here, we introduce
RIsearch, which implements a simpler state model that essen-

tially takes all stacked base pairs into account, but averages
costs over loop openings, internal loops and bulges. This is rea-
lized by an alignment-like algorithm that treats dinucleotides as

the elementary unit of a 36� 36 scoring matrix. An additional
layer of heuristics can be used for genome-wide searches, which
reduces the search space by first identifying short stretches of

complementarity and extending those with RIsearch. It is

beyond the scope of this work to fully address this additional
step. One major consideration here is the G–U wobble, which
has been addressed earlier, e.g. in GUUGle (Gerlach and

Giegerich, 2006).

2 MATERIALS AND METHODS

2.1 The algorithm

The underlying algorithm of RIsearch can be seen as an extension of the

Smith–Waterman–Gotoh algorithm (Gotoh, 1982; Smith andWaterman,

1981) for local sequence alignment. To find putative interaction sites, we

look for complementarity rather than similarity/identity. A similar idea

has been used in the so-called ‘individual base pair model’ introduced by

TargetRNA (Tjaden et al., 2006; Tjaden, 2008). The crucial difference

is that our scoring scheme is based on dinucleotides instead of single

nucleotides. This allows us to reflect the main properties of the

nearest-neighbor free energy model, which is widely applied for RNA

folding (see below for details on the scoring scheme). It can also be con-

sidered as a scoring scheme taking di-residue substitutions into account

with gaps being an explicit part of the scoring scheme (Akbasli, 2008). An

alignment approach making use of di-residue substitutions, but with

other gap scoring was introduced as well (Crooks et al., 2005).

When neglecting intramolecular base pairing, the only structural elem-

ents that need to be considered are stacked pairs, bulges and interior

loops. Contributions from dangling ends and terminal mismatches are

excluded to keep the algorithm simple and fast. We use a three-state

model (Fig. 1), with an M-state for consecutive matches (stacked pairs)

and mismatches (interior loops) and Bq/Bt states for gaps (bulges) in

either sequence (query q or target t). All interactions come from the

I(nitiation)-state and terminate in E(nd). All scores S are defined in one

scoring matrix, where S qi�1, qi; tjþ1, tj
� �

denotes the energy for stacking

the base pair (qi, tj) on (qi�1, tjþ1). qi refers to the ith nucleotide in the

query, tj to the jth nucleotide in the target. Both are indexed in 50- to 30-

direction from 1 to m, respectively, n. As two RNA strands interact

Fig. 1. The flow in the three-state model. This state model has been

(developed for and) proven useful before in the pairwise alignment of

amino acid sequences using doublets, hereby taking into account correl-

ation of neighboring residues (Akbasli, 2008). Here, the dashes indicate

bulges or asymmetric internal loops, but are equivalent to gaps when the

state model is applied to sequence alignments. States are represented by

circles, transitions by connecting arcs. The number of pairs in the circles

indicate the index increments to reach that state, e.g. for the Bq-state

(bulge in query) only the q(uery) index is incremented, thus ‘(þ1,0)’,

while the M-state is reached by (mis)matching two residues, so both in-

dices are updated. In a DP matrix, this corresponds to moving diagonally

for transitioning into the M-state, and horizontally/vertically for the

B-states. Indices along the t(arget) sequence are decremented as the two

interacting RNA strands run in opposite directions. See recursion in the

text for further description
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running in opposite directions (antiparallel), target indices are decre-

mented when query indices are incremented.

For each of the main states, we maintain one table (DP matrix) where

Mi, j contains the maximum score of an interaction that ends ungapped at

position i of the query and j in the target. Accordingly, Bq and Bt hold

maximum scores for sub-alignments ending in a gap.

To lower memory usage from Oðm � nÞ, we split the algorithm in two

steps. In the first step, RIsearch scans for possible interaction sites. By

approximating loop energies with a linear (affine) model, only two rows

of each DP matrix need to be stored. All scores for the current row only

depend on the previous row, achieving a linear space requirement. During

this phase, we store for each row the maximum score and its position in

the query (Ej and E0j). This results in a space complexity of

Oð6 �mþ 2 � nÞ with m and n being the lengths of the query and target

sequence, respectively. This approach introduces an ambiguity, as each

position in the target can only be linked to one position in the query. If

there are multiple sites within the query that bind to the same region of

the target, the weaker interaction might be missed. In practice, however,

this does not cause problems when the query is a short sequence. In the

second step, all entries in E that exceed a given threshold are processed.

For this, a region of 40nt (or a user-specified amount) downstream of the

identified positions is taken into account to compute the actual structure

and free energy of the duplexes. In this way, RIsearch needs only mar-

ginally more time to identify suboptimal interactions.

This approach is similar to RNAplex. We reach a further simplifica-

tion by (i) not using an extra state for interior loops, and (ii) also ap-

proximate small interior loops with the affine model instead of relying on

the look-up tables. (iii) RNAplex seems to incorporate dangling end con-

tributions even though this is not stated in their paper. Fewer states lead

to a less complex recursion and other differences are due to algorithmic

design (most notably our dinucleotide matrix). This also holds true for a

comparison with BINDIGO that distinguishes different types of bulges

and interior loops depending on their size and degree of asymmetry and

includes terminal stacks, thus leading to a more complex recursion.

The RIsearch recursion is given as

Mi, j ¼ max

Mi�1, jþ1 þ S qi�1, qi; tjþ1, tj
� �

Bqi�1, jþ1 þ S qi�1, qi;�, tj
� �

Bti�1, jþ1 þ S �, qi; tjþ1, tj
� �

S �, qi;�, tj
� �

0

8>>>>>>><
>>>>>>>:

Bqi, j ¼ max
Mi�1, j þ S qi�1, qi; tj,�

� �
Bqi�1, j þ S qi�1, qi;�,�ð Þ

(

Bti, j ¼ max
Mi, jþ1 þ S qi,�; tjþ1, tj

� �
Bti, jþ1 þ S �,�; tjþ1, tj

� �
(

Ej ¼ max
i

Mi, j þ S qi,�; tj,�
� �� �

Entries in the M-state (ungapped) can come from (i) the M-state by

extending the previous alignment with one residue on both strands, mean-

ing either a stacking of a new pair, or the symmetric extension of an

interior loop (or opening, closing an interior loop). The entries can (ii/

iii) come from a dash (gap) in either sequence, reflecting the closing of a

bulge or the closing or continuation of an asymmetric interior loop. (iv) A

new alignment can be started and (v) 0 is given if this pair should not be

part of the interaction. In the implementation, the latter two cases are

merged into one, implicitly handled by the scoring matrix. All scores

S �, qi;�, tj
� �

where qi and tj do not form a Watson–Crick or wobble

base pair, and therefore should not start an alignment, are set to zero.

Elements in Bq and Bt can either come from the M-state by opening a

new ‘gap’ or from the same state by extending an existing ‘gap’. As

mentioned before, the row maximum is stored in a one-dimensional

array Ej and the corresponding position i within the query in E0j. One

possibility to allow a position in the target to be related to more than one

position in the query is to make these arrays two-dimensional, giving

room to store the second and third best interaction in E2, j and E3, j.

2.2 Scoring matrix

Values for the 36� 36 scoring matrix (Supplementary Fig. S1) are derived

from the Nearest Neighbor Database (NNDB) (Turner and Mathews,

2010). The NNDB contains parameters, determined from optical melting

experiments, that allow prediction of free energy changes of the different

RNA structural elements (stacked pairs, loops) and are widely used in

software for RNA folding. It provides complete nearest-neighbor sets,

including rules and parameter values, along with tutorials. Considering

the current and previous position of the two sequences allows us to apply

stacking energies for the base pairs. Bulge and interior loop energies

usually contain a length-dependent term, but are here approximated by

an affine model. Figure 2a shows that the affine ‘gap’ model is exact for

bulge sizes 2–6, and over-penalizes larger loops. A single-nucleotide bulge

in our model receives the bulge opening cost and possibly a penalty for

terminal A–U or G–U pairs. This is not the case for the full energy model,

in which the stacking energy of the enclosing base pair is awarded. The

look-up tables for interior loops of sizes 1� 1, 1� 2 and 2� 2 cannot be

incorporated into our scoring scheme. Instead, all energies have to be

approximated by an affine model with opening and extension penalties,

as depicted in Figure 2b. Interior loops with 414 nucleotides are

over-penalized.

We created two matrices, one based on the so-called Turner 1999

energy parameters (Mathews et al., 1999) and one based on the Turner

2004 set (Mathews et al., 2004). The latter is the default, but the user can

choose either. Energy contributions of stacking and bulges are largely

identical, the scoring differs for interior loops. Supplementary Table S1

shows the free energies of example duplexes as modeled by RIsearch and

other methods.

There are some ambiguous cases in the scoring matrix, for example in

S �,�;C,Gð Þ. We cannot tell whether it is the extension of a bulge

(0.4 kcal/mol) or the asymmetric extension of an already asymmetric in-

terior loop (0.6 in T04 and 0.48 in T99). For this case, we decided to just

assign the bulge loop extension penalty, as larger loops are already

over-penalized.

Fig. 2. Approximated loop energies. In red, energies as given by Turner

2004 parameters. In blue, the linear approximation used in RIsearch.

Values for small loops are given as box plots (RIsearch to the right).

(a) Bulge loops: the affine gap model is exact for bulge sizes 2–6, and

over-penalizes larger loops. (b) Interior loops: here symmetric case only,

for asymmetric loops a penalty is added. Furthermore, parameters for

AU/GU closure and terminal mismatch are applied where required in

both schemes. Small symmetric internal loops (1� 1 and 2� 2) have

tabulated free energy changes, here shown as box plots. Next to that,

RIsearch approximations are plotted, including the aforementioned

parameters
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To favor short stable interactions, the user can choose a per-nucleotide

penalty [like in Tafer and Hofacker (2008)], which is then directly inte-

grated in the scoring matrix.

2.3 Data and benchmarking

We benchmarked our method on several datasets containing simulated

data and two real-life datasets of bacterial sRNA and human miRNA

with their respective targets. Accuracy and runtime of RIsearch were

compared with previous methods. We mainly focused on a comparison

with RNAplex, because it belongs to the same class of algorithms and has

already been benchmarked against a variety of other tools.

2.3.1 Simulated data This dataset consists of random sequences of

different lengths (20–50nt, in steps of 5nt) covering a variety of

GC-contents (�10, 30, 50, 70 and 90%). For each class, 1000 sequences

were generated. First, the perfect complement was derived. Then, this

hypothetical optimal binding partner was mutated stepwise as follows:

A random position in the sequence was chosen to be substituted with

75% probability, deleted with 17% or a nucleotide inserted (8%).

The number of repetitions is length dependent to ensure a wide range

of Levenshtein distances (LDs) between the optimal and the mutated

target, yielding 1000 � ðlengthþ 6Þ duplexes for each combination of

length and GC-content.

For each of these duplexes, we calculate the minimum free

energy (MFE) with different tools, namely DuplexFold from the

RNAstructure package (Reuter and Mathews, 2010), which implements

the NNDB 2004 rule set, RNAplex (Tafer et al., 2011) and RNAcofold

(Bernhart et al., 2006b), which both use the Turner 1999 parameters and

RIsearch with the 2004 matrix.

2.3.2 Speed data To benchmark time (and also memory) consump-

tion, we use three different sets of sequences. Random data as well as

genomic sequences of various lengths and different number of query

sequences are contained in those. For details, see Section S2.1 in the

Supplementary Material.

2.3.3 sRNA data This dataset comprises a total of 17 sRNA–

mRNA interactions with experimentally verified binding site positions.

It has been used before as a benchmark set by Busch et al. (2008), Chitsaz

et al. (2009) and lately by Tafer et al. (2011), from which sequences were

taken. Query and target sequences are on average 147 nt and 179nt long.

The specific sRNA–mRNA interactions appear in the table in Section 3.

Since RNAplex was previously benchmarked on a range of tools (Tafer

and Hofacker, 2008; Tafer et al., 2011), we only compare RIsearch (both

parameter sets) with RNAplex (with and without taking into account

accessibility). Accessibility profiles were computed by RNAplfold

(Bernhart et al., 2006a) with parameters as suggested by Tafer

(RNAplfold -W 240 -L 160 -u 40 -O.)

For this benchmark we do not consider suboptimal duplexes initially,

but only whether the first reported hit corresponds to the experimentally

verified interaction site. We present the deviation between predicted and

experimentally verified duplex boundaries as was also done by Tafer et al.

(2011). To evaluate the performance, we additionally calculated the sen-

sitivity (SEN, also called true-positive rate) and the precision [also called

positive predictive value (PPV)] and the harmonic mean of both (also

known as F-measure) as was also done by Kato et al. (2010) and Salari

et al. (2010). The definitions are

SEN ¼
TP

TPþ FN
, PPV ¼

TP

TPþ FP
, F ¼

2 � SEN � PPV

SENþ PPV

We counted true positives (TPs), false positives (FPs) and false nega-

tives (FNs) by comparing the verified interacting base pairs with pre-

dicted ones. An alternative measure is the Matthews correlation

coefficient (Matthews, 1975), which in this case [since the number of

true negatives (TNs) is orders of magnitudes higher than TP, FP and

FN] reduces to the geometric mean of the sensitivity and the PPV:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEN � PPV
p

(Gorodkin et al., 2001). For cases where the first prediction

did not overlap the experimentally verified location, we then also com-

puted suboptimal solutions.

2.3.4 miRNA data We examine a subset of human microRNAs

causing mRNA repression from TarBase (Papadopoulos et al., 2009).

This dataset of 27 interactions has been used before to benchmark

RNAplex (Tafer and Hofacker, 2008). The mature miRNA sequences

from miRBase 17 (Kozomara and Griffiths-Jones, 2011) are used as

query and the 30-UTRs of the respective mRNAs from UCSC hg19 (aver-

age length 2294nt) are used as target. The experimentally confirmed

binding sites were collected from the original papers and mapped to

the extracted sequences. For some miRNA–mRNA pairs, there is more

than one verified interaction site. The majority have only one or two

binding sites (13 and 9), few have up to four, the interactions including

KRAS and NRAS forming the exception with eight and nine possible

binding sites, respectively (Johnson et al., 2005). The 27 miRNA/UTR

pairs were scanned with RNAhybrid, RNAplex and RIsearch, allowing

for suboptimal hits. For RIsearch, we used the 1999 energy parameters,

as the other two methods also use them. An interaction counts as ‘re-

covered’ when the predicted target region overlaps any of the annotated

binding sites. For interactions with more than one experimentally verified

binding site, we considered the one ranked highest (according to their

predicted free energy) for each method.

We used the same 27 interactions to test performance on large-scale

screens. Instead of only the 30-UTR sequence, we used the whole

repeat-masked chromosome where the known target is located. We also

included GUUGle as well as TargetScanS (Garcia et al., 2011) and

miRanda (Enright et al., 2003), which both are specifically designed for

miRNA target prediction. In this screen, we excluded RNAhybrid, be-

cause it requires to fill in the entire DP matrix several times to predict

suboptimal duplexes, which makes it too slow for scanning whole

chromosomes. For each of the five methods, we count the number of

hits which have the same or better score than the best hit that overlaps an

annotated target site. Two different measures were used to evaluate the

methods. For the first measure, we ranked all methods individually for

each miRNA–mRNA pair, where the method yielding the lowest hit

count ranks first (using fractional ranking). Given k interactions, let

cg, i be the count and rg, i the rank of method g in the ith interaction.

The rank product (Breitling et al., 2004) is given as the geometric mean:

RPðgÞ ¼ ð
Qk

i¼1 rg, iÞ
1=k. Because this is an ordinal measurement, we define

a second measure, the relative hit score, which takes account for the

degree of difference between the hit counts of the different methods.

We first find the maximum count N for each interaction:

Ni ¼ maxgfcg, ig and define RHSðgÞ ¼
Pk

i¼1 ðNi � cg, iÞ=Ni.

To demonstrate the efficacy of RIsearch as a filter, we first use

RIsearch (with free energy threshold of �11kcal/mol) and apply

TargetScanS and miRanda on the pre-filtered data. We measure the re-

duction in candidate regions compared with the raw results of the two

miRNA target predictors. We compare this with the filter abilities of

GUUGle (requiring a seed match of at least seven nucleotides) and a

combination of the two.

3 RESULTS

3.1 General ranking of duplexes

To evaluate the accuracy of the scoring scheme, we created a set

of random sequences for different combinations of length and

GC-content as described above. We address not only score

(energy) computations, but also the ranking by the various

tools. In Figure 3a, we show how the different methods deviate
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in their scoring. RNAcofold was included here because it con-
siders intramolecular base pairs resulting in lower energies for

sequences that are further away from perfect complementarity.
The energy deviation to the other tools increases with LD.
RIsearch typically yields higher energies; however, the results

are ranked similarly to the other methods. When comparing
duplex free energies as computed by RIsearch and DuplexFold
(Fig. 3b), we get a Pearson product-moment correlation coeffi-

cient r of 0.99 (P-value 52.2e�16). The Spearman’s rank cor-
relation coefficient � ranges between 0.98 and 0.99. Furthermore,
when looking at the 5% highest ranking duplexes (those with the

lowest �G), the overlap in candidates is quite substantial
(Fig. 3c). Even though the free energies computed by RIsearch
deviate from energies computed by a method using the full

energy model (see comparison with DuplexFold in Fig. 3d), we
have shown that the general ranking of the duplexes correlates
well with the ranking by DuplexFold. See Supplementary Figure

S2 for sequences of other lengths and GC-content.

3.2 Runtime and memory benchmark

As RNAplex has already been shown to be much faster than
alternative methods, we only compare the performance of

RIsearch to RNAplex on different datasets.
On a small dataset of 19 bacterial sRNAs and 100 target

sequences (each 1200 nt long), RNAplex takes around 25 s to

predict all optimal duplexes, whereas RIsearch only needs 9 s

on a standard laptop (Intel C2D @2.53GHz) (Supplementary

Table S2).
To prove that whole-genome scans become feasible, we quer-

ied whole human chromosome 1 with one miRNA and got a

speedup of 181-fold. With more sequences in the query, this

drops drastically. From the data shown in Supplementary

Table S3, it seems that RNAplex uses a substantial amount of

time for the initialization. But also after correcting for that,

RIsearch still shows a significant speedup.
To get a more complete picture, we generated random se-

quences with lengths of 10, 100, 1000 and 25 nt (the latter to

represent ncRNAs of the type miRNA or small interfering

RNA) as queries as well as target sequences in order of magni-

tude steps between 1000 and 1 GB. The speedup of RIsearch

over RNAplex grows with decreasing query and increasing

target lengths (Supplementary Table S4). The extreme speedups

we see for large target sequences should be noted with caution, as

they reflect the same initialization issue as mentioned above. This

overhead in the initialization cannot be explained with more

advanced options to RNAplex, parameters were chosen to

yield fastest runtimes. The overhead might just be an implemen-

tation issue.
Overall, we observe a worst case speedup of around 2.4.

Peak-memory consumption is typically reduced by a factor

1.44, i.e. RIsearch uses �69% of the memory that RNAplex

uses. With short target sequences (�1000 nt), this drops

to 43%.
For all of these benchmarks the simple version of RNAplex

was used, i.e. not taking into account accessibility. We also tested

the version including accessibility profiles and found it substan-

tially more resource demanding than the regular RNAplex,

which itself in its current implementation is considerably

slower than RIsearch (Supplementary Section S2.2).

3.3 Locating sRNA interaction sites

The precision of RIsearch (with 99 and 04 Turner parameters)

was compared with RNAplex (with and without accessibility) on

a real-life dataset of 17 bacterial sRNA–mRNA interactions.

Although RNAplex-a (with accessibility) predicts 16 interactions

that overlap the known binding sites, RIsearch with both energy

parameter sets and RNAplex-c (without accessibility) each re-

cover 12 of the known interaction sites (Table 1). There are

two cases (GcvB-STM4351 and MicC-ompC) where each of

those three methods predicts the same energetically more stable

interaction than the annotated one. When measuring the amount

of overlap of predicted and annotated base pairs (Supplementary

Table S5), RNAplex-a performs best in all measures, with an

average sensitivity and PPV (0.787 and 0.736) higher than

RIsearch04 (0.656 and 0.641) and the other methods (ranging

behind), because it only misses one interaction, not five.

However, if suboptimal solutions are additionally taken into ac-

count, RIsearch04 has a better average sensitivity of 0.919, com-

pared with 0.846 and 0.917 for RNAplex with and without

accessibility, respectively. RIsearch (with its default scoring

matrix) then also outperforms RNAplex in terms of PPV

(RIsearch04: 0.898, RNAplex-a: 0.785 and RNAplex-c: 0.821),

F-measure and Matthews correlation coefficient. In all

Fig. 3. Accuracy on simulated data. Data shown here for length¼ 50nt,

GC-content¼ 50%. (a) Average of all computed MFEs given a certain

LD as reported by the different tools. (b) Correlation of MFE values as

returned by DuplexFold versus RIsearch. (c) Overlap of helices in the top

5% ranking predictions. (d) Relative difference in reported energies, com-

puted as j(DuplexFold–RIsearch)/DuplexFoldj. The boxes represent

the interquartile range (IQR), from the first quartile to the third quartile,

the band inside denotes the median. The whiskers extend to the most

extreme data points within 1.5 IQR from the box. Outliers are shown as

circles
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measurements, the 2004 Turner parameters lead to a higher pre-

diction accuracy than the 1999 parameters in RIsearch.

3.4 Locating miRNA target sites in genomic sequence

We also compared the recovery rates of RIsearch, RNAplex

and RNAhybrid for 27 human miRNA–target UTR duplexes.

Predicted binding sites were ranked according to their free energy

and we report the highest ranking prediction that overlaps

an annotated binding site in Table 2, as it has been done by

Tafer and Hofacker (2008). For 23 of the interactions, the

three methods report the same binding site as the highest scoring

true-positive hit. For example, TarBase contains four possible

binding sites for the let-7e miRNA in the 30-UTR of SMC1A

mRNA. They constitute the top ranking candidates of all the

methods tested here, but in different order. The interaction

that has been experimentally verified (Kiriakidou et al., 2004)

is ranked first by RIsearch and second by the other methods.

In this benchmark, RNAhybrid performs best, known target

sites are ranked higher and predicted more accurately in position.

RNAplex is slightly better than RIsearch in ranking the real

interactions (on average 1.92 compared with 2.07), while

RIsearch predictions are generally closer to the verified binding

site. The frequent one-nucleotide deviation in position could be

an artifact of the different handling of dangling ends and ter-

minal mismatches.
When screening the whole chromosome, we observe very

different levels of specificity (Supplementary Table S6).

TargetScanS fails to find 2 out of the 27 interactions, because

it requires a perfect seed match that is not present in those target

sites. With default parameters, miRanda misses three inter-

actions. We have not tried any other parameter setting.

GUUGle alone performs worst (in terms of RP and RHS), but

when combined with RIsearch or RNAplex, respectively, we get

an miRNA target predictor comparable to the specialized meth-

ods. In this combination, RIsearch scores best in RHS and

slightly behind the two specialized methods in RP.
When applying this combination as pre-filter for TargetScanS

and miRanda, we achieve on average a reduction of candi-

dates by around 37% for both tools. RIsearch without the

GUUGle-prefilter accounts for an average reduction of 27%

for miRanda candidates and 35% for TargetScanS, in some

cases of up to 70% (Supplementary Table S7). The degree of

reduction seems dependent on the GC-content of the miRNA

(see Supplementary Material, page 11).
The prediction of thousands of potential miRNA targets is in

agreement with a recent hypothesis of miRNA response elements

connecting mRNAs, transcribed pseudogenes and long ncRNAs

in large-scale regulatory networks (Salmena et al., 2011).

3.5 Filtering using RIsearch

Here, we illustrate how RIsearch can be used as filter for the

more complex algorithms, such as IntaRNA or RNAup. We

extracted the sequences from Escherichia coli and Salmonella

typhimurium according to the IntaRNA paper (Busch et al.,

2008). In Figure 4, we show a receiver-operating characteristic

curve of the recall against search space reduction given different

energy cutoffs, with an area under the curve of 0.817. It shows

that with a rather conservative cutoff of �10kcal/mol, we can

Table 1. Predicted sRNA target sites

Pair Binding site literature Positions RNAplex-a Positions RNAplex-c 30 Positions RIsearch t99 Positions RIsearch t04

sRNA mRNA sRNA mRNA sRNA mRNA sRNA mRNA sRNA mRNA sRNA mRNA

GcvB gltI 66; 77 31; 43 65; 76 32; 43 34; 74 33; 69 64; 102 12; 44 35; 66 128; 153

GcvB argT 75; 91 89; 104 72; 90 90; 107 95; 125 168; 196 91; 124 169; 206 75; 91 89; 104

GcvB dppA 65; 83 133; 150 57; 92 121; 157 56; 93 120; 158 57; 92 121; 157 57; 92 121; 157

GcvB livJ 63; 87 59; 82 63; 87 59; 82 62; 88 58; 83 63; 87 59; 82 63; 87 59; 82

GcvB livK 68; 77 165; 177 65; 90 150; 177 117; 126 240; 249 65; 97 146; 177 118; 125 241; 248

GcvB oppA 65; 90 155; 179 65; 89 155; 178 64; 90 154; 179 65; 89 155; 178 65; 89 155; 178

GcvB STM4351 70; 79 44; 52 62; 87 33; 58 35; 72 91; 124 30; 65 97; 131 30; 65 97; 131

MicA lamB 8; 36 122; 148 5; 21 1; 16 57; 68 154; 165 8; 36 122; 148 8; 36 122; 148

MicA ompA 8; 24 113; 128 8; 24 113; 128 7; 25 112; 129 8; 24 113; 128 8; 24 113; 128

DsrA rpoS 8; 36 10; 38 21; 40 7; 25 9; 41 6; 37 10; 40 7; 36 10; 40 7; 36

RprA rpoS 33; 62 16; 39 40; 71 1; 32 32; 46 26; 40 33; 45 27; 39 33; 45 27; 39

IstR tisA 65; 87 57; 79 65; 87 57; 79 64; 93 50; 80 65; 92 51; 79 65; 92 51; 79

MicC ompC 1; 30 93; 119 1; 16 104; 119 40; 66 71; 93 41; 65 72; 92 41; 65 72; 92

MicF ompF 1; 33 100; 125 1; 28 105; 125 1; 34 99; 126 27; 32 68; 73 1; 33 100; 125

RyhB sdhD 9; 50 89; 128 19; 41 98; 118 8; 42 97; 129 7; 41 98; 127 7; 41 98; 127

RyhB sodB 38; 46 52; 60 38; 65 38; 60 37; 50 49; 61 38; 46 52; 60 38; 46 52; 60

SgrS ptsG 157; 187 76; 107 168; 187 76; 95 167; 188 75; 96 7; 19 38; 53 7; 19 38; 53

For each sRNA–mRNA interaction, we report the binding site (begin and end positions in both sequences) as given in the literature and as predicted by the four methods.

All methods searched only for the single best-scoring interaction. RNAplex-a uses pre-computed accessibility profiles and only misses one interaction (in bold and gray text).

RIsearch (with 99 and 04 Turner parameters) and RNAplex-c do not take into account accessibility information and instead use a fixed per-nucleotide penalty of 0.3 kcal/mol.

These three methods miss five interactions each, though different ones.
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already filter out 16.1% of the candidates. With �11.5kcal/mol,
we still retain all true targets, while reducing the search space by
27.5%. Considering that IntaRNA uses around 9h 40 min

(and RNAup even 18h 50 min) to compute all 47.726 duplexes,
while RIsearch takes 518 s, this shows how genome-wide
searches can be speeded up.

4 DISCUSSION

RIsearch is a fast method to search for near-complementary base

pairing in genomic sequence by using a simplified energy model.
In a runtime benchmark, we show that RIsearch is at a minimum

a factor of 2.4 faster than RNAplex, the currently fastest method
for predicting near-complementary duplexes and also has a lower
memory consumption. Remarkably, our simplified model gives

good energy estimates for complementary duplexes interspersed
with small bulges and interior loops. Even though RIsearch sys-
tematically computes an energy differing by a small factor com-

pared with the full Turner energy model, the reported energies
strongly correlate (r¼ 0.99) with the energies computed by the
full model in DuplexFold. When ranking random duplexes by

their predicted energies, RIsearch shows on average an overlap
of 94% with DuplexFold and RNAplex within the highest
ranking duplexes.

In our evaluation of prediction accuracy on the sRNA–
mRNA and miRNA–mRNA datasets, we show that RIsearch
achieves a similar or better sensitivity and precision for predicted

base pairs as other compared methods. However, considering the
accessibility of binding sites with RNAplex can increase the re-

covery rate of the verified sRNA–mRNA interactions. Other
approaches, such as IntaRNA and RNAup, also account for
accessibility by computing intramolecular base pair probabilities

in both sequences. This, however, comes at the expense of
runtime. In contrast, the objective of RIsearch is the fast
search for potential RNA–RNA duplexes. One application

is pre-filtering in genome-wide screens. When RIsearch is used
as a pre-filter for specialized miRNA target predictors, such as
miRanda and TargetScanS, the number of target site candidates

can be significantly reduced, which in turn results in a better
precision of the miRNA target prediction.
Problems with developing methods that should be applied on a

genome-wide scale include reliable testing. We face a lack of
experimentally verified interactions. For many miRNAs for ex-
ample, target genes have been identified, but the actual binding

site positions within their 30-UTR are unknown (Lindow and
Gorodkin, 2007). Even for known target sites, the extent of the

interactions is not clear, for examples of bacterial sRNA target
sites, see Sharma et al. (2007). Even though we could benchmark
on a limited dataset, benchmarking the accuracy of genome-wide

searches for RNA–RNA interactions is currently hard given the
limited amount of known interactions. In particular, it is not
possible to reliably calculate the false-discovery rate unless

follow-up experiments are carried out. Another factor is the es-
timation of P-values, which requires a background model for
RNA–RNA interaction to distinguish true positives from

random hits. This, however, depends on incorporating reliable
shuffling schemes, e.g. based on dinucleotide composition, simi-
lar to those for de novo prediction of ncRNA genes (Gorodkin

and Hofacker, 2011).

Table 2. Predicted miRNA target sites

mRNA miRNA RNAhybrid

(�G r p)

RNAplex

(�G r p)

RIsearch

(�G r p)

AGTR1 miR-155 �20.90 1 11 �14.37 1 11 �14.06 1 9

BCL2 miR-16 �24.10 1 1 �18.90 2 1 �18.69 1 1

SLC7A1 miR-122 �29.00 1 2 �23.80 1 2 �23.04 1 4

TPPP3 miR-16 �26.00 2 0 �20.80 2 1 �19.95 1 1

CLOCK miR-141 �22.10 1 0 �16.40 1 0 �15.37 1 7

CXCL12 miR-23a �25.90 1 38 �19.80 2 37 �18.00 2 38

CYP1B1 miR-27b �33.60 1 1 �28.20 1 1 �26.91 1 1

E2F3 miR-34a �25.10 2 10 �19.10 2 10 �18.31 2 1

EZH2 miR-101 �22.40 1 1 �16.90 1 1 �15.65 1 1

PARP8 miR-145 �27.40 1 3 �21.80 1 3 �20.00 1 1

FSTL1 miR-206 �23.20 3 0 �18.40 4 0 �15.87 6 2

GJA1 miR-1 �20.60 1 1 �14.30 2 1 �12.76 2 12

GJA1 miR-206 �21.00 4 11 �15.03 6 11 �12.55 8 0

HAND2 miR-1 �18.10 1 1 �12.20 1 1 �9.61 2 5

HOXA1 miR-10a �23.30 1 14 �15.93 4 12 �12.71 4 13

KIT miR-221 �23.40 3 0 �17.70 3 0 �15.18 2 2

KIT miR-222 �23.70 3 58 �18.60 4 56 �15.38 5 56

KRAS let-7a �21.30 5 2 �16.30 3 3 �15.03 3 3

LIN28A let-7b �33.50 1 1 �27.40 1 1 �25.20 1 5

MAPK14 miR-24 �32.20 1 1 �27.10 1 0 �25.98 1 1

MYCN miR-101 �20.70 1 1 �13.85 2 16 �12.19 1 1

NRAS let-7a �21.60 4 6 �17.70 2 22 �13.96 4 8

PTEN miR-19a �23.20 1 1 �17.70 1 1 �16.74 1 1

ARHGAP32 miR-132 �25.10 1 3 �18.80 1 3 �18.55 1 1

SMC1A let-7e �27.70 1 1 �22.20 1 1 �21.49 1 2

TMSB4X miR-1 �21.90 1 1 �16.90 1 1 �16.76 1 1

TPM1 miR-21 �20.00 1 13 �15.00 1 8 �13.44 1 7

Average rank and position 1.67/6.74 1.93/7.56 2.07/6.81

Column 1: HGNC [HUGO (Human Genome Organization) Gene Nomenclature

Committee] symbol, column 2: miRNA ID (all human), columns 3–5: Results

shown for each of the tools include the �G (kcal/mol) of the interaction, its

rank (r) within all predictions and the deviation [nt] of the predicted target position

pred from the reported one lit (p) with p¼ jbeginðpredÞ � beginðlitÞjþ

jendðpredÞ � endðlitÞj. Note, that for RNAhybrid the energies are usually lower,

because the initiation energy of 4.1kcal/mol is not included. The last row contains

the average of the rank and the deviation in position.

Fig. 4. RIsearch as filter for bacterial sRNA–mRNA interactions. The

color key refers to RIsearch energy cutoffs. TNR (or specificity) is syn-

onymous with the search space reduction we can achieve with different

cutoffs. Recall (or sensitivity, TPR) shows how many of the known inter-

actions we retain
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RIsearch was developed as a tool, which can conduct a fast

initial screen in genomic sequence and aid in the overall goal of

mapping all potential RNA–RNA interactions in, e.g. the human

genome. However, it is beyond the scope of this work to set up

such a pipeline, which most likely involves additional methods,

taking the full energy model into account, as well as the devel-

opment of a framework for computing P-values. The estimation

of P-values by TargetRNA points to a direction for this. For

further future directions, prediction of RNA–RNA interactions

could be combined with high-throughput experimental data,

such as done for RNA structure prediction (Deigan et al.,

2009; Kertesz et al., 2010; Underwood et al., 2010).
The introduced simplifications will make a hardware imple-

mentation of the algorithm, e.g. with a field-programmable gate

array, more feasible. Hardware accelerated versions of the

Smith–Waterman algorithm have been shown to be magnitudes

faster than traditional software implementations (Li et al., 2007).
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